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PICOSECOND ELECTRON BUNCH LENGTH MEASUREMENT BY
ELECTRO-OPTIC DETECTION OF THE WAKEFIELD.

M. J. Fitch�y, A. C. Melissinosz, University of Rochester, Rochester, NY
P. L. Colestockx , FNAL, Batavia, IL

Abstract

The longitudinal profile of an 10 nC electron bunch of a
few picoseconds duration will be measured by electro-optic
detection of the wakefield. The polarization of a short in-
frared probe laser pulse (derived from the photocathode
excitation laser) is modulated in a LiTaO3 crystal by the
transient electric field of the bunch. The bunch profile is
measured by scanning the delay between the laser and the
bunch, and is sensitive to head/tail asymmetries. A single-
shot extension of the technique is possible using a longer
chirped laser pulse.

1 PICOSECOND BUNCH LENGTH
MEASUREMENTS

The generation and manipulation of very short electron
bunches is important for many applications including fu-
ture linear colliders, free electron lasers (FELs), and
plasma wakefield acceleration. Consequently, methods
of measuring the bunch length and temporal profiles of
charged particle beams on picosecond and sub-picosecond
time scales have attracted great interest.

Notable recent efforts have used coherent radiation from
an electron bunch. Coherent transition radiation (CTR) has
been analyzed with far-infrared interferometry [1, 2] with
impressive results. Since the measured signal is an auto-
correlation, it is symmetric in time and insensitive to head-
tail asymmetries. Cherenkov radiation has been examined
with a 200-fs streak camera [3]. Below 1 ps, streak cameras
are increasingly costly and inefficient. A Hilbert tranform
spectrometer employing a Josephson junction detector [4]
can also be used to analyze the millimeter and submillime-
ter radiation from CTR.

Ideally, it is desirable to know the longitudinal phase
space distribution function, not just the rms width (the
bunch length) of this distribution. Frequency-domain tech-
niques may suffer from the problem of missing phase infor-
mation, though recontructing the charge density from the
form factor using Kramers-Kronig relations [5] may be an
improvement. Time-domain techniques do not suffer from
requiringa priori assumptions on the longitudinal bunch
shape. A recent example of a time-domain study using an
rf zero-phasing method is Wang,et al. [6]. The imposed
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longitudinal momentum spread of the zero-phasing cavities
is transformed into a horizontal position spread in a spec-
trometer bend. However, the intrinsic energy spread of the
bunch must be small compared with the correlated energy
spread from the zero-phasing cavities. This condition is
well satisfied by the DC thermionic beam of Wang,et al.,
and they achieve 100 fs resolution. For a high-brightness
photoinjector beam, this condition seems difficult to sat-
isfy.

For beams of high average power, such as the TESLA
design [7], non-interceptive, minimally invasive measure-
ment techniques are desired. Our current effort is to
develop a time-domain longitudinal profile measurement
based on electro-optic sampling at Fermilab’s AØ Photo In-
jector (AØPI), made possible by the combination of a high-
charge (10 nC) high-brightness electron beam and synchro-
nized picosecond laser pulses.

2 ELECTRO-OPTIC SAMPLING

In a nonlinear optical crystal, an applied electric field mod-
ulates the polarization of light passing through the crystal.
This electro-optic, or Pockels effect has wide-ranging ap-
plications.

The principle of electro-optic sampling (EOS) is to use
a short laser pulse as a probe of the fields in the crystal
by measuring a polarization change as the relative delay is
scanned. Since the first studies of EOS on an electric field
injected into a crystal [8, 9], EOS has been demonstrated in
various materials to have multi-THz bandwidths [10, 11].
Electro-optic detection of field transients propaging in free
space has been demonstrated in the far-infrared [12] and
also in the mid-infrared [13].

The passage of a very short, high-charge, relativistic
electron bunch is accompanied by a strong transient elec-
tric field–the wake field. In the lab frame, the electric field
is relativistically flattened to a radial pancake. A simple
estimation of the magnitude of the field may then be ob-
tained using Gauss’ law. Treating the electron bunch as a
line charge (Q = 10 nC), the radial field is

Z
S

~E � ~dA =
q

�0
(1)

jErj =
q

2��0al
= 3 MV/m: (2)

where we have taken the bunch length to bel = 3 mm
for a 10 ps bunch, and have evaluated the field at a radius
a = 2 cm.



Calculating wake fields or the Fourier transform beam
impedances [14] is an important research activity. A more
accurate calculation including theboundary conditions of
the beampipe walls can be made with various computer
codes. For example, ABCI gives for the iris of the AØPI
gun a field magnitudejErj = 1:5 MV/m.

2.1 The Photo Injector Beamline

Fermilab’s AØPI is a TESLA prototype injector [15, 16]
with a Cs2Te photocathode in a 1.625-cell L-band Cu gun
with a solenoid lens. A superconducting Nb 9-cell“cap-
ture” cavity [17] accelerates the beam to 18 MeV followed
by magnetic compression in a dipole chicane.

The laser system is described elsewhere [18, 19]. Briefly,
an actively modelocked Nd:YLF oscillator at 81.25 MHz
is phase-locked to the rf with� 1–2 ps rms jitter. These
pulses are stretched and chirped in a 2 km single-mode
fiber. A fast electro-optic pulse picker selects a 1 MHz
pulse train for amplification in a chain of Nd:glass am-
plifiers. After grating compression to 1–2 ps FWHM,
the 1054 nm infrared pulses pass through two BBO crys-
tals, generating the second and fourth harmonics to green
(532 nm) and UV (263.5 nm). Full charge operation re-
quires 3–5�J UV per pulse for quantum efficiencies of or-
der 1% , and the laser can provide 200�sec pulse trains
adequate for full charge, and longer 800�sec trains at re-
duced charge.

After the harmonic generation crystals, a dichroic beam-
splitter separates the colors: the unconverted infrared
passes through a delay stage (with a stepper motor) and
is expanded and transported to the beamline enclosure as
a probe beam; the UV is expanded and transported to the
cathode. Since the�1 ps UV pulse is undesirably short, it
will be temporally manipulated to a 10 ps quasi-flattop by a
pulse stacker. The pulse stacker is a compact arrangement
of multiple delay lines arranged around a single UV beam-
splitter [20] and this work in progress will be described
separately. Both the infrared and UV beams share the same
evacuated transport line, and so are combined and sepa-
rated at either end with dichroic beamsplitters. From the
first dichroic to the cathode, the UV transmission is mea-
sured to be78� 2%.

2.2 Expected Signal

We have chosen a crystal of lithium tantalate (LiTaO3)
based on the high electro-optic coefficient and good trans-
parency at our infrared laser wavelength and at the mil-
limeter waves of the transient field. The crystal is7 mm �
8 mm � 1:5 mm, and is cut with the~c-axis (with ex-
traordinary index of refractionne ) parallel to the longest
dimension, and the~b-axis the shortest dimension (ordinary
indexno for this and the~a-axis). See Fig. 1.

To avoid conductors which perturb the electric fields, the
crystal is mounted in a vacuum cross with a machined Ma-
cor ceramic holder, and is just recessed into the cross to
avoid behind hit by the beam.
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Figure 1: Electro-Optic Crystal: Detailed Axis Geometry

The probe laser is linearly polarized at45� with respect
to the ordinary and extraordinary optic axes. The laser and
the transient pulse propagate colinearly in the y-direction,
which coincides with the crystal~b-axis. Due to the static
birefringence, the laser (}!) becomes elliptically polar-
ized:

��nat =
!

c
(ne � no) �y; (3)

An additional phase shift is acquired in the presence of the
transient field:

��tra(T ) =
!

c
n3
o
r22Etra(T ) �y: (4)

where the appropriate electro-optic coefficient is
r22 = 1� 10�12 m/V and the index isno = 2:154, so
that a 1 MV/m field accumulated over 2 ps (ct = 0:6 mm)
gives a phase shift of 36 mrad, or� 2�.

This phase shift is analyzed by a polarizing cube beam-
splitter and two photodiodes (see Fig. 2). The static bire-
fringence is compensated by a waveplate which balances
the current in the two photodiodes. By detecting the differ-
ence current between the pair of photodiodes, small pho-
tomodulation depths can be observed, particularly with the
signal averaging of a lock-in amplifier. While it may be
possible to use a lock-in with our 1 MHz pulse trains, we
have concentrated on single-shot difference current mea-
surements. While10�3 is adequate for the above estimate
(� 1%), and increased signal-to-noise ratio is greatly de-
sired.

Group velocity mismatch between the probe laser and
the transient field causes slippage, and degradation of the
time resolution. The common approach is to use a very
thin crystal, or a complicated geometrical phase matching.
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Figure 2: The probe laser passes completely through a vac-
uum cross with the LiTaO3 crystal mounted in a Macor
holder (not shown). The polarization change is analyzed by
a polarizing beam splitter (PBS), balanced with a quarter-
wave plate (QWP) and detected with a balanced pair of
photodiodes (PD).

We have chosen a simple colinear geometry [21, 22] since
for the large group velocity mismatch of LiTaO3, the tran-
sient field is nearly stationary so that the laser sweeps over
the entire portion of the waveform that is inside the crystal.
The desired waveform is recovered by numerical differen-
tiation.

3 EXPERIMENTAL PROGRAM

Once the issues of signal detection, timing, data acquisi-
tion, etc. are resolved, there are several interesting studies
that can be done. A careful study of magnetic bunch com-
pression in the dipole chicane would allow comparison of
the bunch length (and profile) measured with electro-optic
sampling to traces of a streak camera. Since the UV pulse
length on the cathode has some degree of adjustability, the
optimum can be found.

An extension of this scheme to a single-shot measure-
ment using a longer chirped laser pulse and a grating spec-
trograph [23] is under consideration. In this case, the cor-
relation of frequency versus time (the chirp) replaces the
scanning delay, although the time resolution is broadened

due to a convolution effect. As the technology of picosec-
ond semiconductor diode lasers improves [24], it may be
possible to greatly reduce the size, cost, and complexity of
the laser, so that a stand-alone electro-optic bunch length
monitor might be realized.
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